首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153149篇
  免费   24099篇
  国内免费   16806篇
化学   104191篇
晶体学   1606篇
力学   9685篇
综合类   1125篇
数学   20222篇
物理学   57225篇
  2024年   140篇
  2023年   2841篇
  2022年   3141篇
  2021年   4563篇
  2020年   5829篇
  2019年   5538篇
  2018年   5119篇
  2017年   4627篇
  2016年   6967篇
  2015年   6843篇
  2014年   8447篇
  2013年   11164篇
  2012年   13529篇
  2011年   14181篇
  2010年   9841篇
  2009年   9524篇
  2008年   10051篇
  2007年   9083篇
  2006年   8483篇
  2005年   7175篇
  2004年   5688篇
  2003年   4432篇
  2002年   3842篇
  2001年   3383篇
  2000年   2966篇
  1999年   3252篇
  1998年   2776篇
  1997年   2477篇
  1996年   2509篇
  1995年   2287篇
  1994年   2111篇
  1993年   1748篇
  1992年   1569篇
  1991年   1361篇
  1990年   1123篇
  1989年   935篇
  1988年   700篇
  1987年   651篇
  1986年   593篇
  1985年   540篇
  1984年   374篇
  1983年   317篇
  1982年   258篇
  1981年   187篇
  1980年   136篇
  1979年   70篇
  1978年   78篇
  1976年   71篇
  1975年   79篇
  1973年   74篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
The Ramanujan Journal - Inspired by Andrews and Merca’s recent work on the number of even parts over all partitions into distinct parts, we introduce a new kind of Beck type identities, which...  相似文献   
72.
Li  Qiao  Niu  Zhigang  Nan  Xuying  Wang  Enju 《Journal of fluorescence》2022,32(4):1611-1617

Cellular pH homeostasis is essential for many physiological and pathological processes. pH monitoring is helpful for the diagnosis, treatment and prevention of disorders and diseases. Herein, we developed a ratiometric fluorescent pH probe (TCC) based on a coumarin derivative containing a highly active lactone ring. TCC exhibited a typical AIE effect and emitted blue fluorescence under weak acidic condition. When under weak basic condition, the active lactone moiety underwent a hydrolysis reaction to afford a water-soluble product, which gave red-shifted emission. The emission color change from blue through cyan and then to yellow within pH 6.5–9.0 which is approximate to the biological pH range. And the fluorescence color change along with pH value is reversible. Furthermore, TCC was successfully utilized in the detection of the intracellular pH change of live HeLa cells, which indicated that TCC had practical potential in biomedical research.

  相似文献   
73.
Lithium (Li)-based batteries are the dominant energy source for consumer electronics, grid storage, and electrified transportation. However, the development of batteries based on graphite anodes is hindered by their limited energy density. With its ultrahigh theoretical capacity (3860 mAh∙g−1), low redox potential (−3.04 V), and satisfactorily low density (0.54 g∙cm−3), Li metal is the most promising anode for next-generation high-energy-density batteries. Unfortunately, the limited cycling life and safety issues raised by dendrite growth, unstable solid electrolyte interphase, and "dead Li" have inhibited their practical use. An effective strategy is to develop a suitable lithiophilic matrix for regulating initial Li nucleation behavior and controlling subsequent Li growth. Herein, single-atom cobalt coordinated to oxygen sites on graphene (Co-O-G SA) is demonstrated as a Li plating substrate to efficiently regulate Li metal nucleation and growth. Owing to its dense and more uniform lithiophilic sites than single-atom cobalt coordinated to nitrogen sites on graphene (Co-N-G SA), high electronic conductivity, and high specific surface area (519 m2∙g−1), Co-O-G SA could significantly reduce the local current density and promote the reversibility of Li plating and stripping. As a result, the Co-O-G SA based Li anodes exhibited a high Coulombic efficiency of 99.9% at a current density of 1 mA∙cm−2 with a capacity of 1 mAh∙cm−2, and excellent rate capability (high current density of 8 mA∙cm−2). Even at a high plating capacity of 6 mAh∙cm−2, the Co-O-G SA electrode could stably cycle for an ultralong lifespan of 1300 h. In the symmetric battery, the Co-O-G SA based Li anode (Co-O-G SA/Li) possessed a stable voltage profile of 18 mV for 780 h at 1 mA∙cm−2, and even at a high current density of 3 mA∙cm−2, its overpotential maintained a small hysteresis of approximately 24 mV for > 550 h. Density functional theory calculations showed that the surface of Co-O-G SA had a stronger interaction with Li atoms with a larger binding energy, −3.1 eV, than that of Co-N-G SA (−2.5 eV), leading to a uniform distribution of metallic Li on the Co-O-G SA surface. More importantly, when matched with a sulfur cathode, the resulting Co-O-G SA/lithium sulfur full batteries exhibited a high capacity of 1002 mAh∙g−1, improved kinetics with a small polarization of 191 mV, and an ultralow capacity decay rate of 0.036% per cycle for 1000 cycles at 0.5C (1C = 1675 mA∙g−1) with a steady Coulombic efficiency of nearly 100%. Therefore, this work provides novel insights into the coordination environment of single atoms for the chemistry of Li metal anodes for high-energy-density batteries.  相似文献   
74.

This paper considers a positive and increasing pension deficit of a certain pay-as-you-go (PAYG) pension system, and tries to make up for this deficit by using heterogeneous insurance. The positive pension deficit is formulated as a mathematical function in continuous time. The surplus of an appropriate heterogeneous insurance is described by diffusion approximation of a Cramér-Lundberg process. The system of extended Hamilton-Jacobi-Bellman equations under mean-variance criterion is established. The closed-form solution and optimal surplus-multiplier of heterogenous insurance are obtained. Some interpretations further explain the theoretical values of the results.

  相似文献   
75.
Chinese Annals of Mathematics, Series B - In the present article, the authors find and establish stability of multiplier ideal sheaves, which is more general than strong openness.  相似文献   
76.
77.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
78.
Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic structures that are usually not featured with notable band gaps.Endowed with chirality, the periodic structures here are able to undergo imperfection-insensitive large deformation under extension or compression. The influences of geometric parameters on band gaps are discussed via the nonlinear finite element method. It is shown that the band gaps in such structures with curved beams can be very rich and, more importantly, can be efficiently and robustly tuned by applying appropriate mechanical loadings without inducing buckling. As expected, geometry plays a more significant role than material nonlinearity does in the evolution of band gaps. The dynamic tunability of band gaps through mechanical loading is further studied. Results show that closing, opening, and shifting of band gaps can be realized by exerting real-time global extension or compression on the structure. The proposed periodic structure with well-designed chiral symmetry can be useful in the design of particular acoustic devices.  相似文献   
79.
80.
With coal mining entering the geological environment of “high stress, rich gas, strong adsorption and low permeability,” the difficulty of joint coal and gas extraction clearly augments, the risk of solid–gas coupling dynamic disasters greatly increases, and the underlying mechanisms become more complex. In this paper, based on the characteristics of coal’s multi-scale structure and spatiotemporal variation, the multi-scale fractured coal gas–solid coupling model (MSFM) was built. In this model, the interaction between coal matrix and its fractures and the mechanical characteristics of gas-bearing coal were considered, as well as their coupling relationship. By MATLAB software, the stress–damage–seepage numerical computation programs were developed, which were applied into Comsol Multiphysics to simulate gas flow caused by coal mining. The simulation results showed the spatial variability of coal elastic modulus and cross-flow behaviors of coal seam gas, which were superior to the results of traditional gas–solid coupling model. And the numerical results obtained from MSFM were closer to the measured results in field, while the computation results of traditional model were slightly higher than the measured results. Furthermore, the MSFM in a large scale was verified by field engineering project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号